If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+8x-9=10
We move all terms to the left:
7x^2+8x-9-(10)=0
We add all the numbers together, and all the variables
7x^2+8x-19=0
a = 7; b = 8; c = -19;
Δ = b2-4ac
Δ = 82-4·7·(-19)
Δ = 596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{596}=\sqrt{4*149}=\sqrt{4}*\sqrt{149}=2\sqrt{149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{149}}{2*7}=\frac{-8-2\sqrt{149}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{149}}{2*7}=\frac{-8+2\sqrt{149}}{14} $
| 3v+7v-5=45 | | 5=c/4=3 | | 4(x-2=-8 | | 4(m-5)+5=33 | | 2x=6=x-1 | | 4(2-3x)=6(-2x-7) | | t+27=43 | | 15=3y-33 | | Z=-2a-2 | | 3-x/3=2 | | −5(−4+2v)=−50 | | -10-4x=x=5 | | 4(2y−1)−2(2y)=6 | | 4y+7y=–99 | | x-5/3=11 | | 6k+k=14 | | 3(x+1)=2(x+-4) | | 5y+2=7y-10 | | 3(x+19)+2x-10=100 | | 10k-5k=30 | | 5(b+3)=4(b-8 | | 4(2-6x)=-112 | | -7x+9=-7x-11 | | 4(x)-8=2(x-5) | | 2(x=+3)=x=18 | | 45=5(-5+x) | | 12+6x=5x+12 | | 6-2(x-5)=22 | | c=6.10 | | 61=6+5r | | t/7+3=5 | | 4x–x=-9+12 |